

Errol Quinones CSC344 – Programming Languages

__

Problem Set #1: BNF

ABSTRACT:

This first problem set is structured to provide a comprehensive understanding of BNF grammar

and its role in programming languages. The main objective is to familiarize oneself with

structuring BNFs and using them to create parse trees. Below are 5 problems that utilize the

creation of BNF grammar and parse trees to construct sentences. The last problem is a brief and

clear explanation of BNF, aimed at educating newer computer programmers.

Problem 1 – Laughter

__

Start Symbol: L

Tokens: {HA, HEE}

Nonterminals: {L, HA, HEE, extra-HEE}

Production Rules:

<L> ::= <HA> | <HEE> | <empty>

<HA> ::= HA HA <L> | HA HA <HA>

<HEE> ::= HEE | HEE <HA> | HEE <extra-HEE>

<extra-HEE> ::= HEE HEE <extra-HEE> | HEE HEE <HA> | HEE HEE

Parse tree 1: HA HA HEE HEE HEE HEE HEE HA HA

Parse tree 2: HEE HA HA HA HA HA HA

Problem 2 – SQN (Special Quaternary Numbers)

__

Start Symbol: SQN

Tokens: {0, 1, 2, 3}

Nonterminals: {SQN, ZERO, ONE, TWO, THREE}

Production Rules:

<SQN> ::= 0 | <ONE> | <TWO> | <THREE>

<ZERO> ::= 0 <ONE> | 0 <TWO> | 0 <THREE> | 0

<ONE> ::= 1 <ZERO> | 1 <TWO> | 1 <THREE> | 1

<TWO> ::= 2 <ZERO> | 2 <ONE> | 2 <THREE> | 2

<THREE> ::= 3 <ZERO> | 3 <ONE> | 3 <TWO> | 3

Parse tree 1: 0

Parse tree 2: 132

Explain, in precise terms, why you cannot draw a parse tree, consistent with the BNF grammar that

you crafted, for the string: 1223:

Constructing a parse tree, consistent with the BNF grammar for the input string “1223” is not possible

due to the grammar’s rule. The grammar prohibits two or more adjacent instances of the same

quaternary number. The input string has two consecutive 2’s adjacent to one another. In order for the

input string to conform to the BNF grammar, the adjacent 2s must have a 0, 1, or 3 in between them.

Problem 3 – BXR

__

Start Symbol: S

Tokens: {(, #t, #f, and, or, not,)}

Nonterminals: {S, TF, OP, BXN, NOT}

Production Rules:

<S> ::= (<OP> <BXN>) | <TF> | (<NOT>)

<TF> ::= #t | #f | #t <TF> | #f <TF> | <empty>

<OP> ::= and | or

<BXN> ::= <empty> | <S> <S> | <S> |<BXN> <BXN> | <TF>

<NOT> ::= not <S>

Parse tree 1: (or #t)

Parse tree 2: (and (not #t) #f)

Problem 4 – LSS (Line Segment Sequences)

__

Start Symbol: TRIPLE-LSS

Tokens: {(, distance, angle, color,)}

Nonterminals: {TRIPLE-LSS, COLOR}

Production Rules:

<TRIPLE-LSS> ::= <empty> | (<distance> <angle> <COLOR>) | <TRIPLE-LSS> <TRIPLE-LSS>

<COLOR> ::= RED | BLACK | BLUE

Parse tree 1: (120 95 BLACK)

Parse tree 2: (70 180 BLUE) (770 187 RED) (191 145 RED)

Problem 5 - M-Lines

__

Start Symbol: M-EVENT

Tokens: {PLAY, REST, RP, LP, S2, S3, X2, X3,}

Nonterminals: {M-EVENT, EVENT}

Production Rules:

<M-EVENT> ::= <M-EVENT> <M-EVENT> | <EVENT> | <empty>

<EVENT> ::= PLAY <M-EVENT> | REST <M-EVENT> | RP <M-EVENT> LP | LP <M-EVENT> RP |

S2 <M-EVENT> X2 | X2 <M-EVENT> S2 | X3 <M-EVENT> S3 | S3 <M-EVENT> X3 | <empty>

Parse tree 1: LP PLAY RP PLAY

Parse tree 2: PLAY RP S2 PLAY PLAY X2 LP X2 PLAY S2

Problem 6 - BNF?

__

What is BNF?

BNF is short for Backus-Naur Form and is a tool used for constructing grammar to define a

language. BNF grammar has four entities which can specify a programming language's

grammar, tokens, nonterminal symbols, productions, and a start symbol. Tokens represent the

elements of the language. Nonterminal symbols describe the structure of the code. Productions

are rules that describe the nonterminal symbols by replacing the symbols with a string of

tokens and other nonterminal symbols. The start symbol represents the starting point for the

interpretation of the code. Each of these components are used to describe a programming

language’s syntax.

